14/4x+5=7/4x+6x

Simple and best practice solution for 14/4x+5=7/4x+6x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14/4x+5=7/4x+6x equation:



14/4x+5=7/4x+6x
We move all terms to the left:
14/4x+5-(7/4x+6x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 4x+6x)!=0
x∈R
We add all the numbers together, and all the variables
14/4x-(+6x+7/4x)+5=0
We get rid of parentheses
14/4x-6x-7/4x+5=0
We multiply all the terms by the denominator
-6x*4x+5*4x+14-7=0
We add all the numbers together, and all the variables
-6x*4x+5*4x+7=0
Wy multiply elements
-24x^2+20x+7=0
a = -24; b = 20; c = +7;
Δ = b2-4ac
Δ = 202-4·(-24)·7
Δ = 1072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1072}=\sqrt{16*67}=\sqrt{16}*\sqrt{67}=4\sqrt{67}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{67}}{2*-24}=\frac{-20-4\sqrt{67}}{-48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{67}}{2*-24}=\frac{-20+4\sqrt{67}}{-48} $

See similar equations:

| 35=7(x+3) | | -2.5n+8.75.45=n | | D=250x*0,997^x-55x | | 10x=380. | | 7x+9+45+70=180 | | 5.2x26=135.2 | | -1=-36-7x-13x | | 7-2j=-1 | | -2b+(-18)=-24 | | 14x^2-3x-12=9x^2+4x | | k-7/9=-2 | | f(2)=−2f(1)=1 | | (2r+3)+(13–5)=45 | | 13/d=7/4 | | -4+2y=2y-9 | | n/2+4=14 | | -7x2+9x+9=8x2+1 | | 5(x+3)+12x=4-7(-x) | | 4x+5+9=90 | | 6a+13=4a+27 | | -6-4.2x=-(5.7x-5)+x | | X/3=z11 | | 8q-6=4q+14 | | -3k2+9k-1=4+2k2 | | a-5/8=-7/8 | | -2p-5/3=-6 | | 45x27= | | 15x+6=8x+8= | | –3w−5=–4w | | 0.5(x-8)=0.2x=11 | | 8^x^2-12x+22x-13=0 | | -3x+5=5x-43 |

Equations solver categories