If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13z^2+9z=0
a = 13; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·13·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*13}=\frac{-18}{26} =-9/13 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*13}=\frac{0}{26} =0 $
| x+8x=7 | | k2-11k+18=0 | | 70+(x+4)+3x=180 | | 35+500=55g | | x=8x=7 | | 21.17=4x+3.69 | | 8n-(2n+5)=7 | | k/4.3+83.8=45.5 | | 3x=300-x | | -8+4x-6x=60 | | (y+12)^2-400=0 | | -5.5x+0.35=-1.85 | | 1/5x•1/6x=-33 | | 8x6=8×(5+ | | -1(-8x+6)-8=4+2x | | 77(x-4)=14 | | 16-(n(-4))=-36 | | 1/5•1/6x=-33 | | 8p-29.3=2.7 | | 0.3x-12=0.8x-5 | | 2k+12=-4* | | -x^2+21x+107=0 | | (y+12)-400=0 | | 10=12^2x | | (7-2i)(3+5i)=0 | | m/5+0.12=-6.3 | | 9=2s+1* | | 4n+1.62=2 | | 5(-3x-5)-2=5x-7 | | 2/5n-1=-4 | | c²=81 | | 3n+4=7* |