If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+7x=0
a = 13; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·13·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*13}=\frac{-14}{26} =-7/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*13}=\frac{0}{26} =0 $
| 12x+(-x^2)=12 | | 9s+8=21 | | x+9=7x-3=5x+3 | | 3.2x+5x=90 | | x+21=5x+5=3x+23 | | 12+z=-6 | | (2x-1)°+(3x+15)°+74°=180 | | -2f+2f=4 | | -7=3+5n | | 19=9x-8=46 | | –3y=–10−2y | | 11=7x-10=46 | | 4x+5x,+6x=180 | | 21=4x+5=37 | | -25=x+-12 | | 3x-13=5x+2 | | y+58=3y | | -x2+12x=12 | | 2x=64=6 | | -x^2+12x=12 | | y+95=2y | | 1.5y=301.5y=30 | | 3y~5=19 | | 4n–5+115=180 | | -3x-10=5x-(-8) | | y²÷2=50 | | -2(w+9)=-30 | | 10^n+4+5=105 | | 0.2x+0.6x-0.8=8 | | x(-4)=32 | | 7f-15=10f+3 | | -10y+10=100 |