If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x+3x^2-10=0
a = 3; b = 13; c = -10;
Δ = b2-4ac
Δ = 132-4·3·(-10)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*3}=\frac{4}{6} =2/3 $
| w/10.24+7=11 | | 5x2-6x-45=0 | | 11x-5+26=180 | | 2/393a-15)=4(2a+5) | | 2/393a-15)=4(2a+50 | | (8x-2)(40x-15)=0 | | M=-5.b=-7 | | 5x-8=-6x+25 | | 5x2=-45x | | 6+18=4y | | 10+r=+2 | | 6=3h+18 | | (4x+6)=(24-2x) | | (6x-10)=(2x+18) | | 29+6n=6(n=4) | | 5(1-2x)+8x=5-2x | | -5(6n-2)=-5n-40 | | 5=-8n+8n | | 11w-6w=5 | | 11w-6w=4 | | 3.5n=1.70 | | 238000x3.50x=30x+2250 | | 8x11=(8x10)+(1x10 | | 2(7x-3)=4(2x+3) | | 1x6x6=G | | -12u+13=1-3 | | 41=x/21 | | 0.5x+6=0.25(2x-24) | | t/3+9=3 | | 9v-6=48 | | 2+10=b | | 2e-9=21 |