If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x(2x-1)=140
We move all terms to the left:
13x(2x-1)-(140)=0
We multiply parentheses
26x^2-13x-140=0
a = 26; b = -13; c = -140;
Δ = b2-4ac
Δ = -132-4·26·(-140)
Δ = 14729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{14729}}{2*26}=\frac{13-\sqrt{14729}}{52} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{14729}}{2*26}=\frac{13+\sqrt{14729}}{52} $
| 2×(x-3)=6-x | | 3/5×x=840 | | 5x-6=3(x-10) | | 5x-6=3(x-10 | | 2,7x=-1,2 | | 6k+20=4k+10 | | 5e+2=7-2 | | 6+1x-3x=11+3x-3x | | 8+3x-2x=7+5x-1x | | 2+4x=4+7x | | (X+5)/2=15-2x | | 3(2x+1)=-5(2x-2) | | 4/7xx=16 | | 12+5x=-2 | | 1+1x=7+8x | | 4+3x-3x=13+5x-3x | | x=$38x4+$29x2+$5.99x2+$8.9x2+$4.20+$3.50+$6.80 | | 3+4x-1x=13+3x-2x | | x=($38x4)+($29x2)+($5.99x2)+($8.90x2)+$4.20+$3.50+$6.80 | | 3+3x=5-4x | | 3+1x-4x=13+4x-4x | | 1+3x-4x=10+6x-3x | | 5-2(z-4)/3=1/2(2z+3) | | x=-2+1/4 | | 1+3x-3x=10+6x-2x | | 6+4x-4x=14+3x-1x | | (x/400)=0.9 | | 3-(9x+9)=9x-132= | | 16k^2+28k+16=0 | | 16k^2+28k+17=0 | | 2(4+x)=9x-9.5 | | -3x^2−27x=42 |