13=(t-4)(t-8)

Simple and best practice solution for 13=(t-4)(t-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13=(t-4)(t-8) equation:



13=(t-4)(t-8)
We move all terms to the left:
13-((t-4)(t-8))=0
We multiply parentheses ..
-((+t^2-8t-4t+32))+13=0
We calculate terms in parentheses: -((+t^2-8t-4t+32)), so:
(+t^2-8t-4t+32)
We get rid of parentheses
t^2-8t-4t+32
We add all the numbers together, and all the variables
t^2-12t+32
Back to the equation:
-(t^2-12t+32)
We get rid of parentheses
-t^2+12t-32+13=0
We add all the numbers together, and all the variables
-1t^2+12t-19=0
a = -1; b = 12; c = -19;
Δ = b2-4ac
Δ = 122-4·(-1)·(-19)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{17}}{2*-1}=\frac{-12-2\sqrt{17}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{17}}{2*-1}=\frac{-12+2\sqrt{17}}{-2} $

See similar equations:

| 9x+31=5x+3 | | 4-(3x/2)=1 | | 1/x=0.125 | | 5y+3=2(5y+13) | | 2(3x+11)=12 | | 2x=54+3x^2 | | 3x+4x^2+44=0 | | 10x+5-5x=20 | | 6x-10+4x-5+5x=360 | | 8x+3x+35+4x+25=360 | | 8x+3x+35+4x+25=180 | | 3s2+12s+8=0 | | -22=2x-2(-2x-4) | | 7x-6(-4x+14)=201 | | 2x-69=11x+138 | | -2x-107=-11x+73 | | 36+.18m=75 | | 3^5+2x=27^2x | | U+32=2u+6 | | 2^(2x)-15(3^x)+44=0 | | -8x+8x=-5+3(3x+4) | | -j+6=18 | | 2(4x+10)+8x=20 | | 5.4x=202.5 | | 4.6x=34.5 | | 6s-7+5s+5=90 | | 0.25x=19.2 | | 86.6-5x=80.8 | | 13x-43+7x-1=100 | | 3x+2+5=16 | | Y=45x-33 | | u+7.58=9.14 |

Equations solver categories