133/x*5+3(x-4)=2019

Simple and best practice solution for 133/x*5+3(x-4)=2019 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 133/x*5+3(x-4)=2019 equation:



133/x*5+3(x-4)=2019
We move all terms to the left:
133/x*5+3(x-4)-(2019)=0
Domain of the equation: x*5!=0
x!=0/1
x!=0
x∈R
We multiply parentheses
133/x*5+3x-12-2019=0
We multiply all the terms by the denominator
3x*x*5-12*x*5-2019*x*5+133=0
Wy multiply elements
15x^2*5-60x*5-10095x*5+133=0
Wy multiply elements
75x^2-300x-50475x+133=0
We add all the numbers together, and all the variables
75x^2-50775x+133=0
a = 75; b = -50775; c = +133;
Δ = b2-4ac
Δ = -507752-4·75·133
Δ = 2578060725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2578060725}=\sqrt{25*103122429}=\sqrt{25}*\sqrt{103122429}=5\sqrt{103122429}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50775)-5\sqrt{103122429}}{2*75}=\frac{50775-5\sqrt{103122429}}{150} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50775)+5\sqrt{103122429}}{2*75}=\frac{50775+5\sqrt{103122429}}{150} $

See similar equations:

| 5a+9=4a+15 | | 5-2x2=4x+x2 | | x2-28x=63-30x | | 2x2+15x+15=0 | | 34=t/15 | | -5x2-8x+21=0 | | 8z+12=27 | | 7+4a=3(2a-1) | | 3x^2+24x=15+0 | | 12x-5x+17=6x-20 | | 7+4a=3(2a+1) | | 0.8m=1.6 | | (x^2-16)=(3x+12)(x+3) | | 1|3y+9=12 | | n/2=3n/6 | | 1/3y+9=12 | | Q2-102+3p=-5Q | | 2((x-3)(x+3))=0 | | x^2=135+6x | | 2y2-11y+12=0 | | (x)(x)+16-10066=0 | | 6x+36=125 | | x∧2+7x-144=0 | | (x+3)(x+1)=2x^2-18 | | (x+3)(x-1)=2(x*x-9) | | 4x+5=33+2x | | 4x^2+3x-2=25x+100 | | 0,1x3-100=0 | | (2x-3)^2+1=0 | | (2x-3)2+1=0 | | y=2.32*60000+34,180 | | 6(4a-2)=3(a-1) |

Equations solver categories