13/6y-5/2y+13/18=7/9

Simple and best practice solution for 13/6y-5/2y+13/18=7/9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13/6y-5/2y+13/18=7/9 equation:



13/6y-5/2y+13/18=7/9
We move all terms to the left:
13/6y-5/2y+13/18-(7/9)=0
Domain of the equation: 6y!=0
y!=0/6
y!=0
y∈R
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
We add all the numbers together, and all the variables
13/6y-5/2y+13/18-(+7/9)=0
We get rid of parentheses
13/6y-5/2y+13/18-7/9=0
We calculate fractions
(-3024y^2)/1944y^2+2808y^2/1944y^2+4212y/1944y^2+(-4860y)/1944y^2=0
We multiply all the terms by the denominator
(-3024y^2)+2808y^2+4212y+(-4860y)=0
We add all the numbers together, and all the variables
2808y^2+(-3024y^2)+4212y+(-4860y)=0
We get rid of parentheses
2808y^2-3024y^2+4212y-4860y=0
We add all the numbers together, and all the variables
-216y^2-648y=0
a = -216; b = -648; c = 0;
Δ = b2-4ac
Δ = -6482-4·(-216)·0
Δ = 419904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{419904}=648$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-648)-648}{2*-216}=\frac{0}{-432} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-648)+648}{2*-216}=\frac{1296}{-432} =-3 $

See similar equations:

| 3x-3=425(x-3)=20 | | X=-9x-40 | | Y=3x^2-19x+28 | | 7x+8x=100+20+30+50-45-5 | | -135=3(1-5p)-8p | | -11+3(b+5)=7} | | 10y^2-25y=3 | | 13x+8+12=-3x+180 | | 8x+x+8x+x=100 | | H=-16t^2+48t-864 | | Y=3x^2-23x+14 | | p/11=18 | | -102=-6b | | 17x+1+120=180 | | 4a+8/5a+8=5/6 | | 50+3x+12=12x-28 | | 5(2x−4)−3(3x−7)=6 | | 12=b+3b | | 2x+4(x-3)=5x-1 | | -9=k-7 | | 69=-3x-6(-2x+2) | | 8.3=6h | | 6+y=7.6 | | 4=y−112 | | 17=2x-7(2x-11) | | -2x+3(3x+3)=-61 | | 5g=9.2 | | 0=2x^2+10 | | 0.75(4x+8)=−12 | | 131=6x+7(-4+3) | | 7.9=4+x | | 17^(-9x)=3^(-x-7) |

Equations solver categories