13(2x)+20=6x(5x+2)

Simple and best practice solution for 13(2x)+20=6x(5x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 13(2x)+20=6x(5x+2) equation:



13(2x)+20=6x(5x+2)
We move all terms to the left:
13(2x)+20-(6x(5x+2))=0
We calculate terms in parentheses: -(6x(5x+2)), so:
6x(5x+2)
We multiply parentheses
30x^2+12x
Back to the equation:
-(30x^2+12x)
We get rid of parentheses
-30x^2+132x-12x+20=0
We add all the numbers together, and all the variables
-30x^2+120x+20=0
a = -30; b = 120; c = +20;
Δ = b2-4ac
Δ = 1202-4·(-30)·20
Δ = 16800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16800}=\sqrt{400*42}=\sqrt{400}*\sqrt{42}=20\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-20\sqrt{42}}{2*-30}=\frac{-120-20\sqrt{42}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+20\sqrt{42}}{2*-30}=\frac{-120+20\sqrt{42}}{-60} $

See similar equations:

| Y=x2+8x-5 | | 5+0.9x=15.71 | | 7.x+4=-48 | | 132+×^4=24+x | | 0=-7+z/5 | | 132+×=(24+x)*4 | | (X-5)÷3=(x-3)÷5 | | (X-5)÷3=(x-5)÷5 | | -2/3(x+1)=x+6 | | 5(2x-3)+3x-7=5 | | 5(2p+3)-3(2p+3)=4 | | 13(2x)+20=6(5x-12) | | 2m(1+2)=10 | | 4/3s=48 | | 3m-5/m-3+1/2(4m-6)=2m-3 | | 3a=2a+30 | | 16=32x-8 | | 2x+x+54=280 | | 80*0.7^n=0 | | 4×n+-32=36 | | 4×n+-32=+36 | | 2/4x+5=x | | 7x+10=(-60)-2 | | 2(x+6=6x) | | (x+4)=2x+8 | | 5s+9=4 | | (3+x)+(3+x)-100=0 | | 45=3x+x | | 6x-1/2=x+5/3 | | 3(n+7)=81 | | 6(2x+3)=5(4x+2) | | x+x+2,40=8,20 |

Equations solver categories