If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2-24y=0
a = 12; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·12·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*12}=\frac{0}{24} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*12}=\frac{48}{24} =2 $
| -17=5y-7 | | 3+3x=-33 | | 2(t-33)=36 | | 4v+v=15 | | 2(t-33=36 | | -1/2x-2/3=1/3 | | 4^x+5=16x | | r/3+5=9 | | 2x+4/3=-6 | | 8b^2-32=0 | | y=8(3/2) | | 17=-7+3(z-4) | | .4x-8=-3 | | 8^-x+40=128^x | | 40=-2x+4 | | 15(2)+x(2)=46 | | 13x+7=-227 | | x+5/3=3/2-x-2/2 | | 71-x=83-2x | | 500t=750t-1 | | 4x/9-x=x/63-6/7 | | 3^r=4.1 | | 500t=750+1 | | x/2=x/9+8 | | m^2=-63 | | 3^5x=7 | | 4(r+9)=76 | | 6x-2=-7-8x | | 1/4x+0.5x=1.5 | | (-9x-6)+5=-8(x-1) | | q/8-2=1 | | 10(w-91)=60 |