If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-8x=0
a = 12; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·12·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*12}=\frac{0}{24} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*12}=\frac{16}{24} =2/3 $
| -q/2=-3 | | C(x)=0.08+15.50 | | -v/3=1 | | (x)=8x^2+32x-96 | | 1/4x=x-24 | | 3(2m+7)=-5-(6+m) | | (x)=8x^2+3x-96 | | -2x-5x+4=2x+12-x | | (x-24)/5=4 | | 65+17x-70=180 | | 32d=-192 | | 4/8x+6/8x=7/8x | | 4+36=10x | | 7/4x=4/8x+6/8x | | 56+3x+x=180 | | 2x+7+3x+3+30=180 | | w=5.9=7.761 | | d−559=-242 | | w+5.9=294 | | 0.12t=9 | | h−172=573 | | (t+10)^2+(t+20)^2=t^2 | | 5=u^2 | | g+22=95 | | b+-755=133 | | (10+t)+(20+t)=t | | 3(z-9)=3 | | 99=r+38 | | t+10+t+20=t | | x=-1,7,-7 | | 35x+50=35x+100 | | 5x-1=7x-4 |