If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-27=0
a = 12; b = 0; c = -27;
Δ = b2-4ac
Δ = 02-4·12·(-27)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*12}=\frac{-36}{24} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*12}=\frac{36}{24} =1+1/2 $
| 9z=6(0.5z-2) | | 61/2=-5+1/2(n-1) | | 10=8n | | -18+5x=-2x-29 | | 8a-2a+-10=2a-2 | | 4(3-5p)=-5(3p+ | | y-4/3=0 | | -30+6x=3x+20 | | 9(3-x)-4x=5(21÷2)+9 | | y/5-12=-23 | | 4.035=a=3.25 | | 90-x=180 | | 1/2x+8=6x-12-13/2 | | 362=-0.5x^2+36x-150 | | 6-6x=4-5x | | 1l=33*10 | | 10x+9=7x+1+38 | | 8/2y-2/5=1/10 | | 2x²-19x-33=0 | | 1w=33*3 | | 1h=33*4 | | 2/5f-9/7=5/7 | | 1l=31*10 | | 23=5/3x+3 | | 10w+6=-3w-21+10 | | 2(2x+12)=152-12x | | X^3+4x^2+16x=0 | | 25x+15=16x+105 | | 1/3x-27=x-9 | | 41=4x-11 | | 8d-12=11d+0 | | H=70-5t^2 |