If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-121=0
a = 12; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·12·(-121)
Δ = 5808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5808}=\sqrt{1936*3}=\sqrt{1936}*\sqrt{3}=44\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-44\sqrt{3}}{2*12}=\frac{0-44\sqrt{3}}{24} =-\frac{44\sqrt{3}}{24} =-\frac{11\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+44\sqrt{3}}{2*12}=\frac{0+44\sqrt{3}}{24} =\frac{44\sqrt{3}}{24} =\frac{11\sqrt{3}}{6} $
| 34=41=d | | 5x+23=10x-17 | | 3x+5x+4-x-7=88 | | 3/7m=1/3 | | (3k+4)^2=64 | | -381=3w | | 12-4w-2=8w+16-6-12w | | -z=25 | | 80=-12t^2+48t+80 | | 15-16t-4t^2=0 | | (x+4)^2+32=0 | | -b=5/8b-2b | | 10/21n=6/7 | | 500=1300*2.71828^(-10x) | | x/7-x/11=4 | | 1/2b-b=21/10+b | | 6u-10=-4 | | 4t=-3838 | | |-t+3|=6 | | 5+4m=-3+5m | | X+x+13=49 | | -3k-2=-14 | | 3x+x=5040 | | 3t^2+8t+10=0 | | 6p-36-47=7 | | 4x=(8x-5) | | X+x/5=7500 | | (X-1)+5x=7500 | | (9√6x)=180 | | n^2+2/3n=-1/9 | | 5s-4s=1 | | 7x+(-9)=47 |