If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-120=0
a = 12; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·12·(-120)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*12}=\frac{0-24\sqrt{10}}{24} =-\frac{24\sqrt{10}}{24} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*12}=\frac{0+24\sqrt{10}}{24} =\frac{24\sqrt{10}}{24} =\sqrt{10} $
| (8x+10)=(15x+15) | | 3x^2-11x-64=0 | | -(1/3)x=-2x-1 | | 14x2+56x=0 | | 9x+15=15x+3 | | 6x2-48x=0 | | 4x+2x-x=24-2 | | 6=b÷18 | | n=4n-21 | | 55°+54°+x+74=180 | | 5400+3s=12s | | 43x+3x=8x-2 | | 2(x+4)+2x=46 | | t/3—-17=20 | | 6x+10=-15x+15 | | 9x2+72x=0 | | 2x-4x+2=24 | | 8k=3k+15 | | (x-8)=11 | | u/3—-3=6 | | 17x+42=8 | | 2(6+x)=13+2x | | 5(20)=3y-1 | | u—-3=6 | | -6x+18=-2-4x | | 8=-b/3 | | -8+9=u | | X=x+14=x+2(7x) | | -2(-6+5a)-3a=-a+12 | | 21x-1=16x-8=55 | | 8x=5.3333 | | 12-15x=2-15x |