12x-6x(x+1)=4(2x-1)-3

Simple and best practice solution for 12x-6x(x+1)=4(2x-1)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x-6x(x+1)=4(2x-1)-3 equation:



12x-6x(x+1)=4(2x-1)-3
We move all terms to the left:
12x-6x(x+1)-(4(2x-1)-3)=0
We multiply parentheses
-6x^2+12x-6x-(4(2x-1)-3)=0
We calculate terms in parentheses: -(4(2x-1)-3), so:
4(2x-1)-3
We multiply parentheses
8x-4-3
We add all the numbers together, and all the variables
8x-7
Back to the equation:
-(8x-7)
We add all the numbers together, and all the variables
-6x^2+6x-(8x-7)=0
We get rid of parentheses
-6x^2+6x-8x+7=0
We add all the numbers together, and all the variables
-6x^2-2x+7=0
a = -6; b = -2; c = +7;
Δ = b2-4ac
Δ = -22-4·(-6)·7
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{43}}{2*-6}=\frac{2-2\sqrt{43}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{43}}{2*-6}=\frac{2+2\sqrt{43}}{-12} $

See similar equations:

| 5=30/x+2 | | h-6=13 | | r−44=32 | | 8=7k | | m8=5 | | h+16=96 | | 5(y+0.4)=-13 | | 3d+18=39-4dd | | h+5=98 | | m2+11m+13=0 | | 5(8a+12)=220 | | 19=5+2.7m | | 9s(2)=45 | | 2n^2–7n+6=0. | | 2/p=2.616/8.251 | | 3x-5+4=52 | | (n-10)/5=5n | | 2/5(15m-18)=7m+8-12m | | 0=0.75p^2-70p-500 | | -4+7y-9=18 | | x/5-1=1.5 | | 126x+14x²=54+126x | | 3b+2b-3=7 | | 60x=80x+80 | | 2×2×2s=96 | | x/6+15/3=x | | 3x-5*4=52 | | 19-5(3x-1)=9 | | 10(w+6)=70 | | 24n+8=8(3n+1) | | x+7/X^2+9x+14=4 | | 5(y+5)=30 |

Equations solver categories