12x+4x(2)=840

Simple and best practice solution for 12x+4x(2)=840 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x+4x(2)=840 equation:



12x+4x(2)=840
We move all terms to the left:
12x+4x(2)-(840)=0
We add all the numbers together, and all the variables
4x^2+12x-840=0
a = 4; b = 12; c = -840;
Δ = b2-4ac
Δ = 122-4·4·(-840)
Δ = 13584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13584}=\sqrt{16*849}=\sqrt{16}*\sqrt{849}=4\sqrt{849}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{849}}{2*4}=\frac{-12-4\sqrt{849}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{849}}{2*4}=\frac{-12+4\sqrt{849}}{8} $

See similar equations:

| 1-5x-4=22 | | 7x-17=x+19 | | X/7+5=132-3(x-9) | | 4x-2(5-x)=-10 | | X÷7+5=132-3(x-9) | | 4a/3+5=21 | | 2h+48=0 | | (3s–16)+(2s-5)+(s+9)=180 | | 2n/3+3=13 | | -3(s+9)–18=-54 | | -1=-b+63 | | 500+50y=1000 | | (19y+1)+(8y+4)+67=180 | | 250+50y=1000 | | 6z+5z=-22 | | Z÷7+5=132-3(z-9) | | 3k/5+7=16 | | 7(w+5)=77 | | (v+15)+2v+(v-11)=180 | | 3v/6=15 | | 1/x=0,25 | | 2s+2s+32=180 | | 5-q=18 | | 5i/6+2=27 | | x/4=3/17 | | (17a)+30+(a+24)=180 | | (u-24)+(u-24)+2u=180 | | Z/7+5=-6x+30+12x | | 7p+5p+60=180 | | -9c–5=40 | | 4m-7=2m+3 | | 8(4x-6)=-6x+30+21x |

Equations solver categories