12x+12(x+7)=2x(x+7)

Simple and best practice solution for 12x+12(x+7)=2x(x+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x+12(x+7)=2x(x+7) equation:



12x+12(x+7)=2x(x+7)
We move all terms to the left:
12x+12(x+7)-(2x(x+7))=0
We multiply parentheses
12x+12x-(2x(x+7))+84=0
We calculate terms in parentheses: -(2x(x+7)), so:
2x(x+7)
We multiply parentheses
2x^2+14x
Back to the equation:
-(2x^2+14x)
We add all the numbers together, and all the variables
24x-(2x^2+14x)+84=0
We get rid of parentheses
-2x^2+24x-14x+84=0
We add all the numbers together, and all the variables
-2x^2+10x+84=0
a = -2; b = 10; c = +84;
Δ = b2-4ac
Δ = 102-4·(-2)·84
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{193}}{2*-2}=\frac{-10-2\sqrt{193}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{193}}{2*-2}=\frac{-10+2\sqrt{193}}{-4} $

See similar equations:

| x=5-2x+80 | | -v-5=-8 | | -3b-3=0 | | 2+b/6=3 | | 12(6-y)=60 | | -3+n/10=-2 | | 15+x=3x+19-3x | | 3-4a=-5 | | -2=4(p-8) | | x²-5+6=0 | | 1+3b=19 | | 4+p/3=1 | | -1+k/2=3 | | -1+2/k=3 | | -5a+7=-13 | | 4+p/3=7 | | -3(r+4)=-24 | | 32^x=0.0625 | | 1+2p=-19 | | 5p-1=-36 | | 4(2x-3)+7=9 | | 4+n/9=3 | | -6x+18=7-(4x+8) | | 14x-175=4x-5 | | 260/145=(1+r)^10 | | 7y+3/5=6 | | 3+(2x-17)=x | | 40+40+(2x+30=180 | | 1/4p-5=11 | | .62*n=14 | | -10x30=4x+44 | | 2x-6=5x+30 |

Equations solver categories