If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12w^2+16w=48
We move all terms to the left:
12w^2+16w-(48)=0
a = 12; b = 16; c = -48;
Δ = b2-4ac
Δ = 162-4·12·(-48)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{10}}{2*12}=\frac{-16-16\sqrt{10}}{24} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{10}}{2*12}=\frac{-16+16\sqrt{10}}{24} $
| .20(y-1)+0.02y=0.14-0.6 | | .5y+1.8=4y-3.2 | | a+8=9×3-10 | | 4/jj=12 | | U/6+u/3=u/12 | | 2m-11=15;m=13 | | -(1-2x)-x=13+3x | | 34x−18=10x−9 | | x–5=0.1(x+5 | | 20+8/9z=15 | | 3/4x-1/4x+14=10 | | .15-g=23-2g | | 40=-1/2(9x+30)+2 | | 6x-22=8x-8(-7-3x) | | X+8(x)=65 | | X=1/4x+7 | | -8(u+5)=-3u+5 | | 2x²-3x-7=0 | | 3x^2+x-30100=0 | | 2x–1=–10. | | 19x-11=17x+13 | | 2(8=p)=22 | | 1–2x–1=–10. | | 8=4x-8+24 | | 0=1.5x-2 | | -2v^2+13v-15=0 | | (1/6)x=2 | | 2y+4-4=18 | | 9/7+7m/4=99/28 | | 3(4-2x)=5x+34 | | 3/20=2t/3-t/5 | | Z=2-6i |