If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t^2-25t+12=0
a = 12; b = -25; c = +12;
Δ = b2-4ac
Δ = -252-4·12·12
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-7}{2*12}=\frac{18}{24} =3/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+7}{2*12}=\frac{32}{24} =1+1/3 $
| 18g−4g−2g−g−8g=9 | | −48=−0.6k | | -6x+-24-3=-12 | | -3v+-69=156 | | 4(u-1)=-2u-34 | | 20x-2(4x+2)=32 | | 216=121-u | | 13j-10j+4j=14 | | -5t=-47 | | 3x^2+-8=0 | | 1.6(280)=5.2x | | -5x+37=-3x+25 | | 740=56+19h | | 51=-8(-6r-2)+7(r+5) | | w+13=24 | | 5=n/14-4 | | -f-9=9+5f | | 2=w/20-4 | | 4x+8=6x+10-4x | | 180-7x+1+10x-9=19x-18 | | 23+y=250 | | 12.50p+0.15=23.90 | | 76=5u-9 | | 8(2x-4=-64 | | (4x+2)=4x-12(x1 | | 9j-6=8-10+7j | | (2x+3)=(3x−2) | | 10x+22x-5=32x+56 | | 0.25x-12=4 | | -19=9-3w | | Y=100x+7.5 | | 85-34x=2x-5 |