12n(3n+0.7)=4(3n+2.1)+24n

Simple and best practice solution for 12n(3n+0.7)=4(3n+2.1)+24n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12n(3n+0.7)=4(3n+2.1)+24n equation:



12n(3n+0.7)=4(3n+2.1)+24n
We move all terms to the left:
12n(3n+0.7)-(4(3n+2.1)+24n)=0
We multiply parentheses
36n^2+8.4n-(4(3n+2.1)+24n)=0
We calculate terms in parentheses: -(4(3n+2.1)+24n), so:
4(3n+2.1)+24n
We add all the numbers together, and all the variables
24n+4(3n+2.1)
We multiply parentheses
24n+12n+8.4
We add all the numbers together, and all the variables
36n+8.4
Back to the equation:
-(36n+8.4)
We get rid of parentheses
36n^2+8.4n-36n-8.4=0
We add all the numbers together, and all the variables
36n^2-27.6n-8.4=0
a = 36; b = -27.6; c = -8.4;
Δ = b2-4ac
Δ = -27.62-4·36·(-8.4)
Δ = 1971.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27.6)-\sqrt{1971.36}}{2*36}=\frac{27.6-\sqrt{1971.36}}{72} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27.6)+\sqrt{1971.36}}{2*36}=\frac{27.6+\sqrt{1971.36}}{72} $

See similar equations:

| 5x=12x-1 | | 6x-7=10x-1 | | 5.2(8.4-9.5v)=-39.53-7.8v | | 5=2*n | | -x-3=60 | | 5=6*n | | -4(6x-1.5)=2x+(5-5x) | | P(n.3)=720 | | 0.8x=1.600.000.000 | | 10x=26x= | | (5x-6)=(x-4) | | 2a+4=1a | | 32^(2x)=2^4 | | 3a+6=1a | | x/14=0.07/0.03 | | -2-5(2+4m)=33+5m | | 4x-1=6x-14 | | -4y+6=3y-5 | | 31=5(x-2) | | 17=-2x+19.7 | | 4.4.m=-1.1 | | x/3-7=x | | (4m+6)+(5m+3)=180 | | (12x-24)=10x | | 53/12=c/3 | | 1.5(x+7)=45 | | 0.6-x=-0.6(x+1) | | 3D-3C=f+2D | | x-53.927=3.483.511 | | x+4+5x+8+6x=180 | | 90+4x-18+5x-9=180 | | 2y^+14y+15=0 |

Equations solver categories