If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12d^2+17d+6=0
a = 12; b = 17; c = +6;
Δ = b2-4ac
Δ = 172-4·12·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-1}{2*12}=\frac{-18}{24} =-3/4 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+1}{2*12}=\frac{-16}{24} =-2/3 $
| 2n-2n+4n-3n+3n=20 | | 14q-11q-3q+3q=18 | | 21/63=13/x | | 86=4x+38 | | 13p-9p=12p | | 10x−21=141−8x | | 1000e=999e | | ~3j=44.7 | | -m-3=27 | | a−21.5=12.9 | | -25x2+5x+10=0 | | B^4-20b+64=0 | | (2X/x-2)+(2/x)=3 | | 10a=9a+3 | | 6x+(4x-16)+(11x-31)=0 | | 6x+(4x-16)+(11x-31)=180 | | -13=f/7 | | 1/10x=6/5 | | -1/10x=-6/5 | | 74+(9x-11)+(4x-5)=0 | | 74+(9x-11)+(4x-5)=180 | | (1+5i)/(-3i)=0 | | (x1/2+1)1/2=2 | | (7-i)/(2+10i)=0 | | –6w=9−5w | | 6x-86=64 | | 1.70/r-0.032-11=0 | | 6x-86=116 | | 0=-3x^2-4 | | 3x+3(-2x+500)=900 | | -22=-7w+5(w-8) | | 6x-63=99 |