125/6x-14x+1/6x=0

Simple and best practice solution for 125/6x-14x+1/6x=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 125/6x-14x+1/6x=0 equation:



125/6x-14x+1/6x=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We add all the numbers together, and all the variables
-14x+125/6x+1/6x=0
We multiply all the terms by the denominator
-14x*6x+125+1=0
We add all the numbers together, and all the variables
-14x*6x+126=0
Wy multiply elements
-84x^2+126=0
a = -84; b = 0; c = +126;
Δ = b2-4ac
Δ = 02-4·(-84)·126
Δ = 42336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{42336}=\sqrt{7056*6}=\sqrt{7056}*\sqrt{6}=84\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{6}}{2*-84}=\frac{0-84\sqrt{6}}{-168} =-\frac{84\sqrt{6}}{-168} =-\frac{\sqrt{6}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{6}}{2*-84}=\frac{0+84\sqrt{6}}{-168} =\frac{84\sqrt{6}}{-168} =\frac{\sqrt{6}}{-2} $

See similar equations:

| 1/2z-19=-18 | | 3.3=-3z | | 15x-15=x*14 | | 51=19+4w | | 8x-31+5x=-20+3x-71 | | 42=18+3w | | 1/5x+7=23 | | 1-6n+3n=-11 | | Y=-16t2+6 | | -2=-2z-16 | | 150x-x²/4=0 | | 53=-6a-1 | | -8=41/8b | | 12y=16+4y | | -29=-3y-5 | | -8=4⅛b | | 7n-3=-4n-3 | | 2.15-4x=-25 | | x-19.85=-5.81 | | 4x+x-2x+3=15 | | 3/4a=5/8 | | x=x+42230 | | v-17.6=29.08 | | 2(d−2.15)=6.2 | | 4x+3=13+x | | b−–12.22/4=4.46 | | 18+12h=12+0.5h | | -2(h-8)=0 | | 2(y-3)+4=10 | | 3.04=0.76x | | 12+0.5h=18+12h | | 119/136=x/200 |

Equations solver categories