If it's not what You are looking for type in the equation solver your own equation and let us solve it.
124=(40-4h)(32-4h)
We move all terms to the left:
124-((40-4h)(32-4h))=0
We add all the numbers together, and all the variables
-((-4h+40)(-4h+32))+124=0
We multiply parentheses ..
-((+16h^2-128h-160h+1280))+124=0
We calculate terms in parentheses: -((+16h^2-128h-160h+1280)), so:We get rid of parentheses
(+16h^2-128h-160h+1280)
We get rid of parentheses
16h^2-128h-160h+1280
We add all the numbers together, and all the variables
16h^2-288h+1280
Back to the equation:
-(16h^2-288h+1280)
-16h^2+288h-1280+124=0
We add all the numbers together, and all the variables
-16h^2+288h-1156=0
a = -16; b = 288; c = -1156;
Δ = b2-4ac
Δ = 2882-4·(-16)·(-1156)
Δ = 8960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8960}=\sqrt{256*35}=\sqrt{256}*\sqrt{35}=16\sqrt{35}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(288)-16\sqrt{35}}{2*-16}=\frac{-288-16\sqrt{35}}{-32} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(288)+16\sqrt{35}}{2*-16}=\frac{-288+16\sqrt{35}}{-32} $
| -19+j=-34 | | 8x+1+3x+1=13 | | 2x+2+3x-3=6 | | x-5+x=19 | | -2(1-5x)-5(-4x-6)=-4x+6 | | 7+x+x+9=12 | | 2n+8n=70 | | 5x+3=-2(1x+9) | | 15^(x/2)=50^x | | -4.3x+1.3=-4.72 | | 13x+23+12x-8=43 | | 5(3x-3)+10=15x-5 | | x+78=56+2x+134 | | b+352=76. | | 12x-7x-5=20 | | (2x-3)(2x+3)-135=0 | | 6x+14=175+7x+18 | | w=3/4 | | 15s=2.25s+9 | | x+33=144+x+129 | | 4x+7=2(x-5) | | 15+s=9.00+2.25 | | 24x-4+x+7=90 | | (3x^2)+10x=216 | | 15s–2.25=9.00+s | | 9.00s+2.25=15s | | -7u+39=3(u-7) | | x^2+12x+36=-8 | | 7(w+1)=5w+5 | | 2x-30=-2(x+7) | | 3x(x-1)^(1/2)+4(x-1)^(3/2)=0 | | 19.99+g=23.99+4g |