If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121q^2-100=0
a = 121; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·121·(-100)
Δ = 48400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{48400}=220$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-220}{2*121}=\frac{-220}{242} =-10/11 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+220}{2*121}=\frac{220}{242} =10/11 $
| 3f2=0 | | 5y-15=5y+210 | | 100u2-4=0 | | 5y-15=5y-210 | | 2*x=11 | | 5t2+60=60 | | (x)7=60 | | 7x-9=2x+4 | | x7=60 | | 7(x-4)=15 | | 8j2=-72 | | Xx7=60 | | 2·x=11 | | 5x2+15x+102=0 | | 4. 2·x=11 | | 8y2+31=31 | | (x-2)×(2x+4)=0 | | 111=-6x-4x-9x | | 28u2-47=-40 | | 4. 2·x=11 | | x2+27x+170=0 | | 16-4x-6x-9=4 | | 1/2×x×2=-1×2 | | 4.2x=100 | | 33√x+23=38 | | 4x+128=6 | | x2+22x+105=0 | | 7x-2=12x+4 | | 3x+10+2x+-4+x+8+28=360 | | 18+4x=6x+9 | | 13x-6=5x-6 | | 7+3x=5-15x |