If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121g^2=9
We move all terms to the left:
121g^2-(9)=0
a = 121; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·121·(-9)
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-66}{2*121}=\frac{-66}{242} =-3/11 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+66}{2*121}=\frac{66}{242} =3/11 $
| 17s−10s−6s+s=16 | | 5(x-1)=4(4x-3) | | 18h-7h-6h=20 | | 18h-7h-6h=10 | | 3^(x-2)=243 | | r/29=10 | | 6x+5x-13=90 | | 7x+4=66 | | 2x-1(5-3x)=4+2 | | 5q-8q=10 | | 4m+3m+m-7m+4m=20 | | 3^x-2=243 | | h–37=-42 | | 20h-15h=15 | | x/3-7/6=3 | | 11x+6x=-3 | | 3x+8+7x3=55 | | 63.8=p–17 | | 1/2x-9=28 | | 168-4x=1 | | 34+5x=56 | | 63.8=p–17} | | -15+3x=23+4 | | 9x-100=180 | | q/12=100 | | 13c-12c=15 | | 8(b+1)=3(2+b) | | 6/8=m/10 | | 7+4c=17 | | 6b=56 | | 4-x/3=-17 | | 2^(6x+1)=8x |