If it's not what You are looking for type in the equation solver your own equation and let us solve it.
120p-4p^2-600=0
a = -4; b = 120; c = -600;
Δ = b2-4ac
Δ = 1202-4·(-4)·(-600)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-40\sqrt{3}}{2*-4}=\frac{-120-40\sqrt{3}}{-8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+40\sqrt{3}}{2*-4}=\frac{-120+40\sqrt{3}}{-8} $
| 1.5x+7.2+2.5x-8.2=11 | | 84=6(t+4) | | -2.4(r-6)=-7.2 | | -5x–9=-24 | | 4/0.25x0.75=x/0.75x0.75 | | 149.99+p=284.97 | | -2.4(r-6=-7.2 | | 6-3*n=21 | | 5+4*n=17 | | 5*n-17=53 | | -15=8-x/3 | | 24+3c=93 | | 4.5(t-3)=15.3 | | 15+8h=47 | | -2(v+7)=0 | | 16=8(f-87) | | `3x+7=-2x+3` | | 7/3x=2/5 | | 14+6y=14 | | 10x+2/2=11 | | 42=2(u-29) | | 42=2(u-29 | | 11-4p=65 | | 3x(2)+6=90 | | 55=6d+7 | | −12=−x/6 | | 22-8t=10 | | -61+2n=7 | | b+3=28 | | 9(j-93)=27 | | -12c-6c=5550 | | -11x-17=105 |