12/x=(x-18)/1

Simple and best practice solution for 12/x=(x-18)/1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12/x=(x-18)/1 equation:



12/x=(x-18)/1
We move all terms to the left:
12/x-((x-18)/1)=0
Domain of the equation: x!=0
x∈R
We calculate fractions
()/x^2+(-((x-18)*x)/x^2=0
We multiply all the terms by the denominator
(-((x-18)*x)+()=0
We calculate terms in parentheses: +(-((x-18)*x)+(), so:
-((x-18)*x)+(
We add all the numbers together, and all the variables
-((x-18)*x)
We calculate terms in parentheses: -((x-18)*x), so:
(x-18)*x
We multiply parentheses
x^2-18x
Back to the equation:
-(x^2-18x)
We get rid of parentheses
-x^2+18x
We add all the numbers together, and all the variables
-1x^2+18x
Back to the equation:
+(-1x^2+18x)
We get rid of parentheses
-1x^2+18x=0
a = -1; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·(-1)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*-1}=\frac{-36}{-2} =+18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*-1}=\frac{0}{-2} =0 $

See similar equations:

| 4a+12=56 | | -3n-4-17=25 | | |x|+9=75 | | 11/k=15/5 | | -8a-3a=20 | | 3(x-4)+x+2/5=6 | | 6w=600 | | 7k+8=99 | | 18+(10k/7)=9k | | -7a-3a=10 | | -9(8b-4)=23+3b | | 4x-13=8x+1 | | 12x-2=29x-100 | | 2.5=1.25x+x | | 16+5b=9b | | n=249(1-0.3333) | | 8-4(1+7d)=17 | | 10​=(−25​)x​ | | 6p+3=25-5p | | -32=-4+3(k+9 | | n=249(1-0.33.33) | | 4b(b+6)²=0 | | x-8=8-8 | | n=249(1-33.33) | | 3y+4+2y=14 | | -k=-126 | | 2x²+8=170 | | 3x=-0.15x^2+30 | | 4(x-6=-8 | | -4(3t-2)+3t=7t-9 | | 18+10k/7=9K | | 2w^2+6w=56 |

Equations solver categories