12/5x+6=3/20x

Simple and best practice solution for 12/5x+6=3/20x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12/5x+6=3/20x equation:



12/5x+6=3/20x
We move all terms to the left:
12/5x+6-(3/20x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 20x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
12/5x-(+3/20x)+6=0
We get rid of parentheses
12/5x-3/20x+6=0
We calculate fractions
240x/100x^2+(-15x)/100x^2+6=0
We multiply all the terms by the denominator
240x+(-15x)+6*100x^2=0
Wy multiply elements
600x^2+240x+(-15x)=0
We get rid of parentheses
600x^2+240x-15x=0
We add all the numbers together, and all the variables
600x^2+225x=0
a = 600; b = 225; c = 0;
Δ = b2-4ac
Δ = 2252-4·600·0
Δ = 50625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{50625}=225$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(225)-225}{2*600}=\frac{-450}{1200} =-3/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(225)+225}{2*600}=\frac{0}{1200} =0 $

See similar equations:

| 1-3.5y+y=-1 | | -37(15y)+27(22y)=|79-79|+|-172+94| | | 54=x^2-14x+49 | | w/3+16=41 | | 8/12=20/x | | 5b-127=7 | | 6-(x+2)=14 | | -7=5+y | | 8+6x=21 | | 4(n+2)-2n=16+26 | | 5^2x+1=33 | | 8(x+12)=12 | | 5-25=10y | | 2x^2+x−6=0 | | x-2/5-1=x-1/6 | | 3x-10=x+110 | | 8(x-3)+7=2x(4-7) | | 3x^2+2x-21=5 | | 3(4)^(3x)-1=47 | | 12+96x-16x^2=0 | | 3/2x+5/x=13/(x+4) | | 8.3(c-3.1)=-37.35 | | 18=9x/20 | | 2x-1=4x+11 | | -6=16+-18y+y | | 2.25t5=13.5t+14 | | ​11/6​​=n+​​7/9 | | 4(x-4)^2+x^2=x(x+79)-43x | | 4x−2=−14 | | 5/3-4/3x+4=8/3x-7+4/3-2/3 | | x/5=48/30 | | 5/6x-3/20=-1/6x-2/5 |

Equations solver categories