12.6-2(7.2-y)=4.9y(6-y)

Simple and best practice solution for 12.6-2(7.2-y)=4.9y(6-y) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12.6-2(7.2-y)=4.9y(6-y) equation:



12.6-2(7.2-y)=4.9y(6-y)
We move all terms to the left:
12.6-2(7.2-y)-(4.9y(6-y))=0
We add all the numbers together, and all the variables
-2(-1y+7.2)-(4.9y(-1y+6))+12.6=0
We multiply parentheses
2y-(4.9y(-1y+6))-14.4+12.6=0
We calculate terms in parentheses: -(4.9y(-1y+6)), so:
4.9y(-1y+6)
We multiply parentheses
-4y^2+24y
Back to the equation:
-(-4y^2+24y)
We add all the numbers together, and all the variables
-(-4y^2+24y)+2y-1.8=0
We get rid of parentheses
4y^2-24y+2y-1.8=0
We add all the numbers together, and all the variables
4y^2-22y-1.8=0
a = 4; b = -22; c = -1.8;
Δ = b2-4ac
Δ = -222-4·4·(-1.8)
Δ = 512.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-\sqrt{512.8}}{2*4}=\frac{22-\sqrt{512.8}}{8} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+\sqrt{512.8}}{2*4}=\frac{22+\sqrt{512.8}}{8} $

See similar equations:

| 5=p−8 | | 21-12x=3 | | 2x+3x+x+6-6=x | | -5x-45=-10 | | 16-4=3rr=4 | | x+8.63=001 | | 2m+8=–6 | | 2(x+2)÷5-x-1÷2=1 | | 9x+144=387 | | w/3=11.3 | | 5.11+2m=3 | | 2x+4-x-2=3x-2-x+3 | | 3x+10=+5x-10 | | -9x+3=6-3 | | 6(x-5)-3=-21 | | 7=1+x/16 | | 2x+10=2x-20=180 | | 6(x-5)-3=21 | | 3x+4=8-6 | | H(t)=1+4t-1.86t^2 | | (3n-7)/2=3.55 | | 15x-15=360 | | 100x^2+2000x+10000=0 | | 3x-12=18 | | 4⋅x=-62 | | 3y+8+4y-5=108 | | 2x^2+12-54=0 | | 10z−5+7z−10+8z=2z−6+4z−820.− | | 2.00x+1.50=15 | | 4x^2=-28x-49 | | 51+x+2x=90 | | P=11v-(720+3v) |

Equations solver categories