If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12(y-34)62y-8(11y+7)=18y(-6-12)
We move all terms to the left:
12(y-34)62y-8(11y+7)-(18y(-6-12))=0
We add all the numbers together, and all the variables
12(y-34)62y-8(11y+7)-(18y(-18))=0
We multiply parentheses
744y^2-25296y-88y-(18y(-18))-56=0
We calculate terms in parentheses: -(18y(-18)), so:We add all the numbers together, and all the variables
18y(-18)
We multiply parentheses
-324y
Back to the equation:
-(-324y)
744y^2-25384y-(-324y)-56=0
We get rid of parentheses
744y^2-25384y+324y-56=0
We add all the numbers together, and all the variables
744y^2-25060y-56=0
a = 744; b = -25060; c = -56;
Δ = b2-4ac
Δ = -250602-4·744·(-56)
Δ = 628170256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{628170256}=\sqrt{16*39260641}=\sqrt{16}*\sqrt{39260641}=4\sqrt{39260641}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25060)-4\sqrt{39260641}}{2*744}=\frac{25060-4\sqrt{39260641}}{1488} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25060)+4\sqrt{39260641}}{2*744}=\frac{25060+4\sqrt{39260641}}{1488} $
| u+3.88=9.57 | | 1946=c÷5 | | (x+3)/6=2 | | 6.8=3+2d | | u/2-4.6=-1.9 | | 16x+2=43x+1=180 | | − 5 t + 7 = 11 t − 25 | | 6+3x=8x−14 | | -2+2f=-10 | | 16/m=144/12 | | 5x=2x–12 | | x(12-x)=-160 | | 3=(2/4y)-1/3y | | 1+3|x−5|=10 | | 1000000=-5x^2+15000x | | 3=(2/4y)-(1/3y) | | -6b+5=1,1/2 | | 4/3Xx=16 | | -5x+8=-6x-9 | | 1000000=-5x^2+15000 | | (4/3)x=16 | | {1}{4}z+8=12 | | -5(x-3)=22x=31 | | 5x+5=8x=17.2 | | 1/(x+1)+4=9/(x-1) | | 5x+100=2109 | | 11.4=2w+4 | | -1.2=3u-4.2 | | 2s+4=-10-10s | | h+12=-18 | | 7(2p=1)=14p+7 | | 6q+9=2q-9+10q |