12(y+2)=6(y2+4)

Simple and best practice solution for 12(y+2)=6(y2+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12(y+2)=6(y2+4) equation:



12(y+2)=6(y2+4)
We move all terms to the left:
12(y+2)-(6(y2+4))=0
We add all the numbers together, and all the variables
-(6(+y^2+4))+12(y+2)=0
We multiply parentheses
-(6(+y^2+4))+12y+24=0
We calculate terms in parentheses: -(6(+y^2+4)), so:
6(+y^2+4)
We multiply parentheses
6y^2+24
Back to the equation:
-(6y^2+24)
We add all the numbers together, and all the variables
12y-(6y^2+24)+24=0
We get rid of parentheses
-6y^2+12y-24+24=0
We add all the numbers together, and all the variables
-6y^2+12y=0
a = -6; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-6)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-6}=\frac{-24}{-12} =+2 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-6}=\frac{0}{-12} =0 $

See similar equations:

| -3=-2m+2 | | 10/x=4/28 | | 4c-21=7 | | h/10+3=9 | | 4x+44=92 | | 7x+4=3+24 | | 3=0m+5 | | W^+7w-18=0 | | 2+2x/3=5 | | -3(4x-7)=-2(3x+8)-6x | | 7a–3a+6a= | | 2=-2m+3 | | 5(3p-2p)=25 | | 20b+–19b=–14 | | -7-9n+14n+2=-20 | | 3+2x=5+11x | | 6•5/21-5y=-30 | | -4(x+6)=-184 | | 10h-5=45 | | 32k-48=16 | | -1.5x+6=31.5 | | x2=225;x= | | 12x+9=2x+69 | | 5x+4^2=74 | | 3x-2/7+5×-8/4=11/4 | | x^2+3x-10=2x^2-3x-2 | | 18=3-t | | 435=c15 | | 17x+6=8x-57 | | 4+36=10x x= | | 22.5-1.5=m | | 10x–7=45 |

Equations solver categories