12(27)=(x+8)(x+8)

Simple and best practice solution for 12(27)=(x+8)(x+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12(27)=(x+8)(x+8) equation:



12(27)=(x+8)(x+8)
We move all terms to the left:
12(27)-((x+8)(x+8))=0
We multiply parentheses ..
-((+x^2+8x+8x+64))+1227=0
We calculate terms in parentheses: -((+x^2+8x+8x+64)), so:
(+x^2+8x+8x+64)
We get rid of parentheses
x^2+8x+8x+64
We add all the numbers together, and all the variables
x^2+16x+64
Back to the equation:
-(x^2+16x+64)
We get rid of parentheses
-x^2-16x-64+1227=0
We add all the numbers together, and all the variables
-1x^2-16x+1163=0
a = -1; b = -16; c = +1163;
Δ = b2-4ac
Δ = -162-4·(-1)·1163
Δ = 4908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4908}=\sqrt{4*1227}=\sqrt{4}*\sqrt{1227}=2\sqrt{1227}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{1227}}{2*-1}=\frac{16-2\sqrt{1227}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{1227}}{2*-1}=\frac{16+2\sqrt{1227}}{-2} $

See similar equations:

| 5t-8=3t+12= | | 36x-19=665 | | 9u-17=-5u-7 | | 34x=27x-3 | | Y=6a-11 | | 1/5x+4=3 | | v^2-7v-5=-6v | | -7w+49=4(w-7) | | -9(y-1)=-4y-6 | | -11.25x+12.2-3.75=0 | | 5v+37=-9(v-1) | | 0.4x-1.4=1.5+2.4x | | T+8a+a=5 | | 4(x-3)=5x-6-2x | | 10=7(4d+5)+8 | | -1.75-7.25x+6.1=0 | | 8x-32=(-20x)÷4+46 | | 2+r=6r-5(r+4) | | 8.45-8x-3.25x=0 | | 41a+56=9a+8(7+4a) | | 10=-5(6c-2)+30c | | 5d^2+19d+16=0 | | -3=-7s+4+7s | | -18=-12n | | 6=3(4+8b) | | 4x+5+3x-2=0 | | x÷3-8=12 | | 7-8h=10+9(5-4h) | | 7x+2x-8=26 | | 72+8a=8(a+9) | | 2p=p-4-9p | | -d^2-12d+4=-6d^2 |

Equations solver categories