If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11y^2-15-13=0
We add all the numbers together, and all the variables
11y^2-28=0
a = 11; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·11·(-28)
Δ = 1232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1232}=\sqrt{16*77}=\sqrt{16}*\sqrt{77}=4\sqrt{77}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{77}}{2*11}=\frac{0-4\sqrt{77}}{22} =-\frac{4\sqrt{77}}{22} =-\frac{2\sqrt{77}}{11} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{77}}{2*11}=\frac{0+4\sqrt{77}}{22} =\frac{4\sqrt{77}}{22} =\frac{2\sqrt{77}}{11} $
| 3x+24+4x-23=0 | | 3(m+2)=-24 | | 7z+2/3=3 | | 3x(x+4)=x2-5x+3 | | 3+5/x=2/x^2 | | 2x-4-9=x+2 | | (3x)*(x-2)=45 | | x-0,25x=150 | | x/71=4 | | z/105=10 | | 4+s/6=-16 | | 5y^2+10y-75/y^2-6y+9=0 | | −5(2x−6)+8x=222 | | 7=35t-2 | | 7=35t−2 | | X=0.62x+452,500 | | 2x+4x+37=180 | | 5x=100=50 | | 8.2x-7=34 | | (12x-8)/20-(20-7x)/40=3/10-(15+x)/20+9/40x | | (12x-8)/20-(20-7x)/40=3/10-(15+x)/20+9/40 | | 73+c+10+c-15=180 | | s-2+s+3+2s-13=180 | | 3n=-3n | | t-11+2t+t-1=180 | | 9s+ 20=−16 | | 3(5+m)=18 | | 87+y-20+y+9=180 | | 2u+2u+u+25=180 | | 5x11=26 | | 5x+2(-4x+3)=1 | | 12x+5=3×+50 |