11x=3/x=2

Simple and best practice solution for 11x=3/x=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11x=3/x=2 equation:



11x=3/x=2
We move all terms to the left:
11x-(3/x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
11x-(+3/x)=0
We get rid of parentheses
11x-3/x=0
We multiply all the terms by the denominator
11x*x-3=0
Wy multiply elements
11x^2-3=0
a = 11; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·11·(-3)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*11}=\frac{0-2\sqrt{33}}{22} =-\frac{2\sqrt{33}}{22} =-\frac{\sqrt{33}}{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*11}=\frac{0+2\sqrt{33}}{22} =\frac{2\sqrt{33}}{22} =\frac{\sqrt{33}}{11} $

See similar equations:

| 99-3x=54 | | 2x+15+9x-1=36 | | 4-7f=12 | | (x−5)2=16 | | 13t+3t-16t+2t-t=13 | | 6x-9-2(1-x)=x+9, | | t÷4-5=15 | | 13x+12=5x-6 | | 3(x-5)(6x+12)=0 | | 2x-4-6x=16 | | .3(x-5)(6x+12)=0 | | 8x-5-3x+10=6x+2-4x+20 | | 5x-34=40 | | -2n+16=-5n+n | | 10-3x+8x-2=-27 | | .2x+0.8=9.6 | | 17j−13j=4 | | 6(7+2k)=9(k) | | -21n+-12=-180 | | 4(x-3)=-3+23 | | 7x-(5x+7)=-7 | | 6p+73=169 | | 2x-3/4-4x+3/5=x-3/2 | | c-5/9=7 | | (2x-3)/4-(4x+3)/5=(x-3)/2 | | 4x+7+12x-2=37 | | .5x-35=40 | | -4w-5=7 | | -4x+4+2x-1x=16 | | 81-v=162 | | 10.7=10x | | -8-2x=2x |

Equations solver categories