If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-81=0
a = 11; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·11·(-81)
Δ = 3564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3564}=\sqrt{324*11}=\sqrt{324}*\sqrt{11}=18\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{11}}{2*11}=\frac{0-18\sqrt{11}}{22} =-\frac{18\sqrt{11}}{22} =-\frac{9\sqrt{11}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{11}}{2*11}=\frac{0+18\sqrt{11}}{22} =\frac{18\sqrt{11}}{22} =\frac{9\sqrt{11}}{11} $
| 5v+16=6v+2 | | −5+a2=−5 | | 7(x-4)+6=-3x-12 | | 2.4x-2.1=8.1 | | 3=2x+20 | | 7(x-4)+6=-3x-12* | | 3-5a=10-5a | | p-31/6=2/2 | | 17.5x=25 | | 7(x=+7)=56 | | 16x+6=20x-9x+2 | | 9x-9=7x=33 | | 1+1/2(4x-6)=2 | | 8×-2=8x= | | 1.6=(x-777/x-496) | | 12/15=16/a | | 1=3w+4 | | x+x(41+59)=180 | | 2x+15x-5=x-13 | | |2x−1|=9 | | -17-17u=11-19u | | 30+2x=A | | d=2+1/3 | | 10x-7(9-5x)=18 | | 〖5x10〗^(10)=x/(〖0.100〗^*0.200〖-0.100〗^*〖X-0.200〗^(*)X+X^2) | | –31=2d–7 | | 8(k-6)+58=2(3k+5) | | f(×)=20-× | | 5x-2=14x-73 | | x-4/13-2=0 | | 33=–7x–2 | | F-3=-3^2+2x-1 |