11x2-10x=4-2x/2

Simple and best practice solution for 11x2-10x=4-2x/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11x2-10x=4-2x/2 equation:



11x^2-10x=4-2x/2
We move all terms to the left:
11x^2-10x-(4-2x/2)=0
We add all the numbers together, and all the variables
11x^2-10x-(-2x/2+4)=0
We get rid of parentheses
11x^2-10x+2x/2-4=0
We multiply all the terms by the denominator
11x^2*2-10x*2+2x-4*2=0
We add all the numbers together, and all the variables
11x^2*2+2x-10x*2-8=0
Wy multiply elements
22x^2+2x-20x-8=0
We add all the numbers together, and all the variables
22x^2-18x-8=0
a = 22; b = -18; c = -8;
Δ = b2-4ac
Δ = -182-4·22·(-8)
Δ = 1028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1028}=\sqrt{4*257}=\sqrt{4}*\sqrt{257}=2\sqrt{257}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{257}}{2*22}=\frac{18-2\sqrt{257}}{44} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{257}}{2*22}=\frac{18+2\sqrt{257}}{44} $

See similar equations:

| X2+2x=3(2-x-x2) | | 3(x-2)-5(7-2x)=11 | | 5x2=15x-2/5 | | 6x2+x-1/3=0 | | 21x2+x-2=0 | | 2199.34=2x+100 | | 5x2-4x+4=0 | | 3+1a=15 | | 5x2-23x+12=0 | | 10x2-x-3=0 | | 3x2-5x/2-2=x2+1 | | 46+n=3n | | x2+11x/10+1=x+1/2 | | X2/12=x/4+1/2 | | X2-x/2=3 | | X2+5x-20=25-2x2-x | | X2-2x-10=3x+4 | | 6x+8=-x2 | | 3x2+3x+6=2x2-2x | | x2-x-3=x | | 3x2-24x-60=0 | | 10x-8=8x+16 | | 2x2-24x+22=0 | | -3x2-12x-9=0 | | 2(3+4m)=42 | | -x2-2x+8=0 | | 4x2-12x-16=0 | | -21+9=3(5-n)-4n | | 2d+2=-6 | | 10-4x=3x-3 | | x2-2x=-7 | | x-1/5+2(3-2x)=1/2+3x |

Equations solver categories