If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11a^2+30a-9=0
a = 11; b = 30; c = -9;
Δ = b2-4ac
Δ = 302-4·11·(-9)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-36}{2*11}=\frac{-66}{22} =-3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+36}{2*11}=\frac{6}{22} =3/11 $
| –2.1–6x=1.5 | | 10+7(j+3)=4(2j-1)+5 | | p+90+2p=180 | | 3(x+1=9) | | 2(x+11)+6=8x+22 | | 2a+4=3a+24a−2=a+4 | | 9x-19=x+29 | | 8/3c-3=2/3c-12 | | u/3.75=3 | | x*5+9*x/2=152 | | 2(2y+8)=60 | | 8s-20=2s+4 | | 2x-30=130 | | s+6+2s=180 | | x5+9x/2=152 | | 8=6x+5 | | v.12.5=5 | | 2v+14=3v-12 | | 8x+7-3x=5x+2 | | 10x+3+6x+7=90 | | 10x+3+6x+7=180 | | 6x+7x=÷13 | | 6x-100=x | | 3c=35.1 | | 15.46=u/6 | | 3x+50+7x+100=180 | | 33(16-4y)=-133 | | 86x+2=172 | | 3u+36=180 | | 241=90-x | | x÷2+5=-3 | | 3x^2+5x-162=0 |