11=6+t2

Simple and best practice solution for 11=6+t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11=6+t2 equation:



11=6+t2
We move all terms to the left:
11-(6+t2)=0
We add all the numbers together, and all the variables
-(+t^2+6)+11=0
We get rid of parentheses
-t^2-6+11=0
We add all the numbers together, and all the variables
-1t^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $

See similar equations:

| 6x^2+13x−15=0 | | 9=4+3+x | | 0.15=y-25 | | –7v–13=–76 | | X+20+3x-10=180 | | p(6)=6+1 | | -14+n=-16 | | 6(x+5)-5x=50 | | y=24+(24+8) | | 7m=2m^2 | | 6x+11=3x−7 | | -4*(2y+6)*y=0 | | X+24-x=90 | | x+5.4=7.4 | | x+(x+86)=874 | | 3x+31-2x-6=180 | | (3x+1)(x+3)=19–2(x+2)2 | | 6c+2c+4=0 | | 2w−8=2 | | 12y+7=3y+88 | | 9x+16x-12=4(6x+4)-4 | | x+(x+86)=847 | | x=12x+12/34x+2 | | 6.50+0.50x=9+0.25x | | 6.50+0.50x=9+0.25x+ | | 3y+6÷6=8 | | 31-p=-65 | | |5x+2|=17 | | 4x+171=13x-9 | | 3(h+72)+34=37 | | 5(2x-10)=-6(4x-7) | | 3(x–1)=2x+6 |

Equations solver categories