11=(2x+5)(6x-6)

Simple and best practice solution for 11=(2x+5)(6x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11=(2x+5)(6x-6) equation:



11=(2x+5)(6x-6)
We move all terms to the left:
11-((2x+5)(6x-6))=0
We multiply parentheses ..
-((+12x^2-12x+30x-30))+11=0
We calculate terms in parentheses: -((+12x^2-12x+30x-30)), so:
(+12x^2-12x+30x-30)
We get rid of parentheses
12x^2-12x+30x-30
We add all the numbers together, and all the variables
12x^2+18x-30
Back to the equation:
-(12x^2+18x-30)
We get rid of parentheses
-12x^2-18x+30+11=0
We add all the numbers together, and all the variables
-12x^2-18x+41=0
a = -12; b = -18; c = +41;
Δ = b2-4ac
Δ = -182-4·(-12)·41
Δ = 2292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2292}=\sqrt{4*573}=\sqrt{4}*\sqrt{573}=2\sqrt{573}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{573}}{2*-12}=\frac{18-2\sqrt{573}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{573}}{2*-12}=\frac{18+2\sqrt{573}}{-24} $

See similar equations:

| 6x+1+4x-11+4x-11=180 | | 6x-10=32+2x | | 11=2x+5+6x-6 | | 2(x+6)+6=4x-2 | | √n+5-√n-10=1 | | 5,6-3(2-0,4y)=0,4(4y-1) | | X=10t^2-40t+55 | | 2r^2+16r-150=-4r | | 65-12x=4x+3 | | 4.08x+3.75x=6000 | | (4x-3)+(6x-4)=180 | | 6x+5=30x-10 | | 50=3(s+16) | | Xx.025=X=106,941 | | 5x+17=4(3x-7) | | 9(c+8)=153 | | -8-4y=2y+16 | | (7x+6)=(5x+3)=(3x-9) | | 5y+4y=135 | | 3.3x-4.1x=2x | | 5(b-5)=15 | | -7=-5+h | | 5b-64=51 | | 7r^2-17r-17=-5 | | 2a+3=51 | | 2/5+1/2=4/5+2a | | x+3.30+x=13.76 | | 7=d/2 | | 2+2w=-2 | | Xx.025=106,941 | | d^2-8d+16=1 | | 3-x/2=-11 |

Equations solver categories