If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1132=167t(+19t)
We move all terms to the left:
1132-(167t(+19t))=0
We calculate terms in parentheses: -(167t(+19t)), so:a = -3173; b = 0; c = +1132;
167t(+19t)
We multiply parentheses
3173t^2
Back to the equation:
-(3173t^2)
Δ = b2-4ac
Δ = 02-4·(-3173)·1132
Δ = 14367344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14367344}=\sqrt{16*897959}=\sqrt{16}*\sqrt{897959}=4\sqrt{897959}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{897959}}{2*-3173}=\frac{0-4\sqrt{897959}}{-6346} =-\frac{4\sqrt{897959}}{-6346} =-\frac{2\sqrt{897959}}{-3173} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{897959}}{2*-3173}=\frac{0+4\sqrt{897959}}{-6346} =\frac{4\sqrt{897959}}{-6346} =\frac{2\sqrt{897959}}{-3173} $
| 82=6(x+5)+20x | | 5(p+40)=440 | | x^2-x=5/8 | | 15x+22=7x=62 | | 6(x-9)=9(x-1) | | 2.5n-(-8.2)=34.9 | | a/8=-1 | | (1/2)x^2-2x-(5/2)=0 | | v+10=-2 | | v+10=2 | | 82=6x+5+20x | | -15x=-5(3x+x | | -x+4=58+5x | | 5=-4c+1 | | Z=4/3a | | 1/2x^2-2x-5/2=0 | | 24-8c=4(6c-3) | | 3n+4=2n+ | | 9x+72=-3x | | −5*g+2.3=−18.8 | | -7/8x=1/56 | | Z=4/3a’ | | (6x+8)(9x+7)=180 | | (6x+8)=(9x+7) | | 13-5u=-48 | | 106+(11x-4)=180 | | 2{m-3}=33 | | .25(4+20r)-8=-5 | | 5x-3-x+7=-1+3x+15+3x | | 5x+8=-3+6x | | 5a-(8-a)=4a-4 | | 28=-5f+7f |