If it's not what You are looking for type in the equation solver your own equation and let us solve it.
111=(8x+14)(7x+5)
We move all terms to the left:
111-((8x+14)(7x+5))=0
We multiply parentheses ..
-((+56x^2+40x+98x+70))+111=0
We calculate terms in parentheses: -((+56x^2+40x+98x+70)), so:We get rid of parentheses
(+56x^2+40x+98x+70)
We get rid of parentheses
56x^2+40x+98x+70
We add all the numbers together, and all the variables
56x^2+138x+70
Back to the equation:
-(56x^2+138x+70)
-56x^2-138x-70+111=0
We add all the numbers together, and all the variables
-56x^2-138x+41=0
a = -56; b = -138; c = +41;
Δ = b2-4ac
Δ = -1382-4·(-56)·41
Δ = 28228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28228}=\sqrt{4*7057}=\sqrt{4}*\sqrt{7057}=2\sqrt{7057}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-138)-2\sqrt{7057}}{2*-56}=\frac{138-2\sqrt{7057}}{-112} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-138)+2\sqrt{7057}}{2*-56}=\frac{138+2\sqrt{7057}}{-112} $
| -29=-8+6(b+5 | | 8n+3-5n=-15 | | 3(6+9x)=-34 | | 17.1-19.6=-20-7x | | 7+5(1+8d=31 | | 2=x/2-5 | | 5y+4-4y+6=6y | | 3.2x-15.6=3-17 | | 2y+6=6y-30 | | 3(x-9)=8x-12 | | 4/x+5/2x=1 | | 14=8+u/2 | | 3x.4=36 | | 1/5*s=6 | | 18+20+8x=98 | | 23n=598 | | 18=y/30 | | 13=3(x+12)+20x | | 17f=765 | | 22=j/18 | | 19t=190 | | 3=20(x+6)-11x | | 216=27b | | 9x-12=4(7+x) | | 31g=837 | | 31g=839 | | -6(-3+20x)=18+15x | | 2k=8k+30 | | 6/3m-24=0 | | 5x+15=7(5+x) | | 10(x-10)=3x+12 | | -8-8x=2(16+16x) |