11/b+2=3/5b+10

Simple and best practice solution for 11/b+2=3/5b+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/b+2=3/5b+10 equation:



11/b+2=3/5b+10
We move all terms to the left:
11/b+2-(3/5b+10)=0
Domain of the equation: b!=0
b∈R
Domain of the equation: 5b+10)!=0
b∈R
We get rid of parentheses
11/b-3/5b-10+2=0
We calculate fractions
55b/5b^2+(-3b)/5b^2-10+2=0
We add all the numbers together, and all the variables
55b/5b^2+(-3b)/5b^2-8=0
We multiply all the terms by the denominator
55b+(-3b)-8*5b^2=0
Wy multiply elements
-40b^2+55b+(-3b)=0
We get rid of parentheses
-40b^2+55b-3b=0
We add all the numbers together, and all the variables
-40b^2+52b=0
a = -40; b = 52; c = 0;
Δ = b2-4ac
Δ = 522-4·(-40)·0
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2704}=52$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-52}{2*-40}=\frac{-104}{-80} =1+3/10 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+52}{2*-40}=\frac{0}{-80} =0 $

See similar equations:

| -2(x4)=18 | | 6x2-33x+42=0 | | -2f+9=-5f | | y/7-3=3 | | 3x-13=11-x | | -9x+4-x=54 | | 5x=-4x-5 | | 6x+24=8x-8 | | (30x=72)-(10x=-72) | | 7+j=2j-1 | | 2x+5-5x=2x+20 | | 7+j=2j-2 | | 6c+16.5=13.5+10c | | 8-2p+7=p-3-3p | | 79+(6x-15)+(5x-5)=180 | | 8-2p+7-7=p-3-3p-7 | | −14(z−5)=−14z+7 | | 7v^2-3v-7=0 | | -5x+7=-6x | | 3(7x+-8)-9=3(x+1) | | -4w=-3-7w | | 2(x+8)=3x+9 | | x+x(.1)=124 | | 305=115·10p | | 4+5r=29 | | 12x+52-16=180 | | -10+b=9b | | 5x=(12x-41) | | 8-7x=-5-8x | | N-4=4+2n | | 4(v-8)=-5v+40 | | 5r=-6+4r |

Equations solver categories