11/8y+11/8y+2y=190

Simple and best practice solution for 11/8y+11/8y+2y=190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/8y+11/8y+2y=190 equation:



11/8y+11/8y+2y=190
We move all terms to the left:
11/8y+11/8y+2y-(190)=0
Domain of the equation: 8y!=0
y!=0/8
y!=0
y∈R
We add all the numbers together, and all the variables
2y+11/8y+11/8y-190=0
We multiply all the terms by the denominator
2y*8y-190*8y+11+11=0
We add all the numbers together, and all the variables
2y*8y-190*8y+22=0
Wy multiply elements
16y^2-1520y+22=0
a = 16; b = -1520; c = +22;
Δ = b2-4ac
Δ = -15202-4·16·22
Δ = 2308992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2308992}=\sqrt{64*36078}=\sqrt{64}*\sqrt{36078}=8\sqrt{36078}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1520)-8\sqrt{36078}}{2*16}=\frac{1520-8\sqrt{36078}}{32} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1520)+8\sqrt{36078}}{2*16}=\frac{1520+8\sqrt{36078}}{32} $

See similar equations:

| 2d/9+4/9=-6 | | 24*7x=10 | | 2d+4/9=-6 | | -6n-2n+2=18 | | (2w+6)2+w2=228 | | 2=2x+3(-x+2) | | 1/4+t=5/4 | | -80=x+6 | | 2(2t+4)=1/4(24-8t) | | -x-13=-17 | | 64/x=80/100 | | 0.125y-4.8=1.2 | | -7(x-1)-7x=-9+2x | | 64/x=80-100 | | -7/16h+28=21 | | 8+b=90 | | -14(10g+2)=+13g | | y=48/0 | | -14(10g+2)=13g | | 4y-23=9(y+3) | | F(m-2)=-5(m-2)+2 | | 1/2m-6=3 | | 44-12.95p= | | 2x-14+3x=5(6x-5)+6 | | 10x+13=4x-5 | | x-3/5=7/10x | | 5x+25x-8=6(5x+7) | | x5−7x9=115 | | -10+10x=180 | | 24x-80=24x-80 | | 8x-9=+1 | | (3x+18)-8x=-17 |

Equations solver categories