11/2b+2=3/5b+10

Simple and best practice solution for 11/2b+2=3/5b+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/2b+2=3/5b+10 equation:



11/2b+2=3/5b+10
We move all terms to the left:
11/2b+2-(3/5b+10)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
Domain of the equation: 5b+10)!=0
b∈R
We get rid of parentheses
11/2b-3/5b-10+2=0
We calculate fractions
55b/10b^2+(-6b)/10b^2-10+2=0
We add all the numbers together, and all the variables
55b/10b^2+(-6b)/10b^2-8=0
We multiply all the terms by the denominator
55b+(-6b)-8*10b^2=0
Wy multiply elements
-80b^2+55b+(-6b)=0
We get rid of parentheses
-80b^2+55b-6b=0
We add all the numbers together, and all the variables
-80b^2+49b=0
a = -80; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·(-80)·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2401}=49$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*-80}=\frac{-98}{-160} =49/80 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*-80}=\frac{0}{-160} =0 $

See similar equations:

| $352=5(50)+3y | | 1/3(9x−15)+4x=9 | | x/7-7=-7 | | x+.01x=123 | | 4(p+10)=2p+20 | | u+2.55=5.97 | | 6x+20+8x-10=180 | | 5x+12=42 | | 6x+20-8x-10=180 | | 12w-{1}=4w+5 | | -y-12+6y-33=180 | | 65=x(1+0.20) | | 4w−17=19 | | 4y+-5=21 | | w/4–4=3 | | y=-1/5+1/3 | | Y=8x-60 | | 15-2b=-18 | | 35=x20 | | 6s=396 | | 12=z-4/4 | | 5x+28+7x4=180 | | 14q=280 | | y3−4=3 | | 3x-5(x-3)=-3x+15 | | x/3-8=18 | | u+42=892 | | (x-17)+(7x+5)=180 | | 3x-4x+16x=-101+33+108-100 | | 7(v-5)=4v-5 | | -5x+14=-3x+4 | | 2(x+2)^1/3=6 |

Equations solver categories