11/10u-2=9/8u

Simple and best practice solution for 11/10u-2=9/8u equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/10u-2=9/8u equation:



11/10u-2=9/8u
We move all terms to the left:
11/10u-2-(9/8u)=0
Domain of the equation: 10u!=0
u!=0/10
u!=0
u∈R
Domain of the equation: 8u)!=0
u!=0/1
u!=0
u∈R
We add all the numbers together, and all the variables
11/10u-(+9/8u)-2=0
We get rid of parentheses
11/10u-9/8u-2=0
We calculate fractions
88u/80u^2+(-90u)/80u^2-2=0
We multiply all the terms by the denominator
88u+(-90u)-2*80u^2=0
Wy multiply elements
-160u^2+88u+(-90u)=0
We get rid of parentheses
-160u^2+88u-90u=0
We add all the numbers together, and all the variables
-160u^2-2u=0
a = -160; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·(-160)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*-160}=\frac{0}{-320} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*-160}=\frac{4}{-320} =-1/80 $

See similar equations:

| 12-2t=-8 | | -4(2z+6)+4(4z-2)=z | | 6-3(r+8)=-9r+3r | | 3(6+4)-2=-2x+4(4+6x) | | 10-w=-3 | | -30=3(w-1) | | 3y-90=180 | | 75=86-11n | | -6(6a-7)=258 | | 5p-73=2p+5 | | f/5=45 | | 4.2=11-6.1x | | -40-8n=-5(4n-4) | | 3x+17x-8=4(5x+4) | | x=32-32 | | -4x-5=-19 | | (3s-12)+s=228 | | t/3-9=11 | | 2(2-3x)=2(2x+5) | | 2x-10+4x+16=18 | | 10(p+1.50)=10p+ | | 3(t+8)+19=7 | | 4+n-9=-8-2n+12 | | -2(1-6r)=-98 | | -5(9a-5)-3=112 | | -7(x-8)=14 | | -6-2v=11+7v-8v | | -2(4x-7)=2(-5x+9) | | 4w-7=77 | | h/2=20 | | 3m^2-8m-115=0 | | 1-b=9 |

Equations solver categories