11-(3x+1)=7x(x-6+2)

Simple and best practice solution for 11-(3x+1)=7x(x-6+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11-(3x+1)=7x(x-6+2) equation:



11-(3x+1)=7x(x-6+2)
We move all terms to the left:
11-(3x+1)-(7x(x-6+2))=0
We add all the numbers together, and all the variables
-(3x+1)-(7x(x-4))+11=0
We get rid of parentheses
-3x-(7x(x-4))-1+11=0
We calculate terms in parentheses: -(7x(x-4)), so:
7x(x-4)
We multiply parentheses
7x^2-28x
Back to the equation:
-(7x^2-28x)
We add all the numbers together, and all the variables
-3x-(7x^2-28x)+10=0
We get rid of parentheses
-7x^2-3x+28x+10=0
We add all the numbers together, and all the variables
-7x^2+25x+10=0
a = -7; b = 25; c = +10;
Δ = b2-4ac
Δ = 252-4·(-7)·10
Δ = 905
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{905}}{2*-7}=\frac{-25-\sqrt{905}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{905}}{2*-7}=\frac{-25+\sqrt{905}}{-14} $

See similar equations:

| p-(p+2)=4(p-2)+2p | | 54=y/6 | | 8-3(x+3)=2-3x | | 8x-6.8=-4+9x | | a/6=72 | | 7a+7+2(a-4)=17 | | -4(t-4)+6t=9t-2 | | -6n+3=3(-3n+8) | | 23=12v | | -5j−6=-6j | | 3x-10=5x+4 | | 2.8+10m=6.75 | | 4÷x+3=15 | | 2x+6=0.5(x+8)​ | | -6x=-2(x+12) | | 2-4d=13 | | -6(x-5)=5x+41 | | -4(t-2)+6t=8t-5 | | 18x=14+16x | | 11-w=-35 | | 3x-16=8(x-7) | | 5x+2-3x=x-6 | | -10=12v | | -126=-9(x-3) | | 2g−9=-g | | 4−6v=-6−5v | | 13x-24=180 | | 3.5x+63.96+1.03x=-0.8x | | 2x^2+28x=15x | | 4x-21-14x=0 | | 4x+40=25 | | -8+4x+2x=40 |

Equations solver categories