10y-5y(3y+1)=8(y-4)

Simple and best practice solution for 10y-5y(3y+1)=8(y-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10y-5y(3y+1)=8(y-4) equation:



10y-5y(3y+1)=8(y-4)
We move all terms to the left:
10y-5y(3y+1)-(8(y-4))=0
We multiply parentheses
-15y^2+10y-5y-(8(y-4))=0
We calculate terms in parentheses: -(8(y-4)), so:
8(y-4)
We multiply parentheses
8y-32
Back to the equation:
-(8y-32)
We add all the numbers together, and all the variables
-15y^2+5y-(8y-32)=0
We get rid of parentheses
-15y^2+5y-8y+32=0
We add all the numbers together, and all the variables
-15y^2-3y+32=0
a = -15; b = -3; c = +32;
Δ = b2-4ac
Δ = -32-4·(-15)·32
Δ = 1929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{1929}}{2*-15}=\frac{3-\sqrt{1929}}{-30} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{1929}}{2*-15}=\frac{3+\sqrt{1929}}{-30} $

See similar equations:

| 45,267-q=17,012 | | 64=7(r+2} | | 4(n+9)=4(6+n) | | -12x=17 | | 1÷3x=25 | | t-2/3=11/4 | | 10^3x+4=9 | | 7(8+a)=2(4-a) | | p-45,267=87,012 | | X^2+x+2+3x^2+6x=2 | | 6x+5-2x=15x-4 | | 4.012-s=3.313 | | 9x-(6x-2)=7x-8 | | 7/9=r/6 | | 3(f+7)=8(2+f) | | 2x+9(x–1)=8(2x+2)-5 | | 3.5x+31.8=2.6-11.1x | | 41/2=k*11/12 | | 9x-(6x-2)=7x-6 | | 41/2=k11/12 | | -3(n+2=-3n-6 | | p/1.8=2.2 | | 1/2(x-2)=12+7x | | 15=2a+3a | | y(8)=21 | | -19=7t | | .5(x-10)=34+7x | | 7a=-10 | | .5x(x-10)=34+7x | | 1-p-8=-3 | | 24/5+m=71/9 | | (9x+220)^1/4=-4 |

Equations solver categories