If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y(y+3)=51
We move all terms to the left:
10y(y+3)-(51)=0
We multiply parentheses
10y^2+30y-51=0
a = 10; b = 30; c = -51;
Δ = b2-4ac
Δ = 302-4·10·(-51)
Δ = 2940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2940}=\sqrt{196*15}=\sqrt{196}*\sqrt{15}=14\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-14\sqrt{15}}{2*10}=\frac{-30-14\sqrt{15}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+14\sqrt{15}}{2*10}=\frac{-30+14\sqrt{15}}{20} $
| 2x-x=438 | | X=5y-72+8 | | c/3=57 | | t/11-8=3 | | 2y+8+6y=8 | | 2)3g–14=13 | | x+35.4=40.9 | | 8m+6+2m=34-8 | | x+139.9=150.5 | | 5(2x–4)=7(x+1)–3 | | 2r+8-7r=-7 | | y=-(1)-1 | | 4(x–3)=2x–4 | | -15+3x-7x=45 | | x+75.2=85.3 | | 8+7+5x=20+35 | | -8=x+24-9x | | x+64.1=70.7 | | x/12+x/4+2x/6=4 | | m/5+7=16 | | 4-|x|=3 | | x+122.7=132.5 | | 0.3678z^2+0.5288z-0.4968=0 | | 2x+15=2x+15-10 | | X+6(x-1)=43 | | x+242.9=260.8 | | (5b-4)(b-3)=0 | | x+115.1=128.2 | | 133.4+x=145.5 | | 5(x-2)-3=4(x+4) | | x+103.8=116.9 | | 4b-3b=b-2b |