If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-50x+60=0
a = 10; b = -50; c = +60;
Δ = b2-4ac
Δ = -502-4·10·60
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10}{2*10}=\frac{40}{20} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10}{2*10}=\frac{60}{20} =3 $
| (-3)-8=x | | 5x-3(2x-4)=12-2x | | 12q−7q=10 | | 3(j+5)=6 | | 8x-13=6x-6 | | 5/19=-14/25x | | (3x-59)+(2x-1)=180 | | 1/2x+9=x-1 | | 3x-2=10.4 | | 5/8=12g | | 5c=16.5=13.5+10 | | 2/3x+1/4=1/8 | | 4(2y+6)=2y+16 | | 16=(0x-4)+10 | | 12x+40+2x+16=180 | | 4x+9=3x+9+x | | 14=-2(3x-7) | | 37q-21=16 | | 16=(1x-4)+10 | | v/2-(-3)=4 | | -3/4z=12 | | 3/4a+5=11 | | -10=10(k-2) | | -10x+3x+9=-5-x | | 6=4f | | -4=2(j+3) | | -15=5(h-2) | | -5x-5=-3-6x | | (b/3)+91/8)=19 | | -3y+1+y=5 | | 6+4v=7 | | -12=6(g-4) |