If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-4x=0
a = 10; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·10·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*10}=\frac{8}{20} =2/5 $
| 22+7x=43 | | x/6+2/3=5/4 | | 2x-13=11x+2 | | 4x+8-4x=-5 | | 3x+2-5=8 | | 1(6-x)=5x+30 | | 2x-13=9x+2x+2 | | 7x=5+2(6x-5) | | 1/3x+5/6=7/4-1/2 | | (3y+15)+4y=120 | | |2x-1|-3x=9 | | 15x-6=1+15x | | 9/4x=15/10 | | 1-2x+2x=1 | | -4x+15=-9 | | -8n=11 | | 3(x-5)=5x+13 | | 4.1*15.6y=21.7(4.3y+18.4)4.1 | | 4x−1=3*2+5 | | 12x+16/2=100 | | –8n=–3n−5n | | 9x-6=x+12 | | 4*3−1=3y+5 | | –10+z=z | | 9x-6=x12 | | 5v=5v+1 | | 20=-1(10-6d) | | 3y+19=4y+84 | | -7/8x+1/6=2/3x+5 | | (3x+15)+(4x+9)=90 | | 2(3w-6)+2w=36 | | -3*4+4y=14 |